Toward a gauge theory for evolution equations on vector-valued spaces

نویسندگان

  • Stefano Cardanobile
  • Delio Mugnolo
چکیده

We investigate symmetry properties of vector-valued diffusion and Schrödinger equations. For a separable Hilbert space H we characterize the subspaces of L2 R3 ;H that are local i.e., defined pointwise and discuss the issue of their invariance under the time evolution of the differential equation. In this context, the possibility of a connection between our results and the theory of gauge symmetries in mathematical physics is explored. © 2009 American Institute of Physics. doi:10.1063/1.3227666

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards a Gauge Theory for Evolution Equations on Vector-valued Spaces

We investigate symmetry properties of vector-valued diffusion and Schrödinger equations. For a separable Hilbert space H we characterize the subspaces of L(R , H) that are local (i.e., defined pointwise) and discuss the issue of their invariance under the time evolution of the differential equation. In this context, the possibility of a connection between our results and the theory of gauge sym...

متن کامل

Some Fixed Point Theorems in Generalized Metric Spaces Endowed with Vector-valued Metrics and Application in Linear and Nonlinear Matrix Equations

Let $mathcal{X}$ be a partially ordered set and $d$ be a generalized metric on $mathcal{X}$. We obtain some results in coupled and coupled coincidence of $g$-monotone functions on $mathcal{X}$, where $g$ is a function from $mathcal{X}$ into itself. Moreover, we show that a nonexpansive mapping on a partially ordered Hilbert space has a fixed point lying in  the unit ball of  the Hilbert space. ...

متن کامل

Stochastic differential inclusions of semimonotone type in Hilbert spaces

In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...

متن کامل

Remarks on the Paper ``Coupled Fixed Point Theorems for Single-Valued Operators in b-Metric Spaces''

In this paper, we improve some recent coupled fixed point resultsfor single-valued operators in the framework of ordered $b$-metricspaces established by Bota et al. [M-F. Bota, A. Petrusel, G.Petrusel and B. Samet, Coupled fixed point theorems forsingle-valued operators in b-metric spaces, Fixed Point TheoryAppl. (2015) 2015:231]. Also, we prove that Perov-type fix...

متن کامل

QUANTALE-VALUED GAUGE SPACES

We introduce a quantale-valued generalization of approach spaces in terms of quantale-valued gauges. The resulting category is shown to be topological and to possess an initially dense object. Moreover we show that the category of quantale-valued approach spaces defined recently in terms of quantale-valued closures is a coreflective subcategory of our category and, for certain choices of the qu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009